OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I Spring 2001 Midterm Exam #1

Name : _____

Student ID: _____

E-Mail Address:_____

Problem 1:

Evaluate the following integrals involving delta function:

a)
$$\int_{-\infty}^{\infty} e^{-t} u(\lambda - 2)\delta(\lambda - t)\delta(\lambda - 1)d\lambda$$

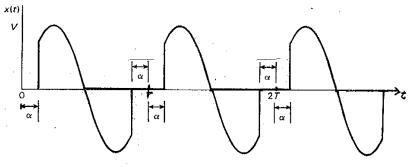
b)
$$\int_{-\infty}^{\infty} e^{jwt}\delta(\frac{t}{2} - 1)dt$$

Problem 2:

- a) Find the Laplace transform of $\cos(t-2)e^{-t}u(t-1)$
- b) Find the Inverse Laplace transform of

$$\ln \frac{s+a}{s+b}$$

Problem 3:


A continuous-time signal x(t) has the Laplace transform

$$X(s) = \frac{s+1}{s^3 + 3s^2 - 5s - 7},$$

determine the Laplace transform V(s) for
 $v(t) = x(t)\cos 5t$.

.

Problem 4:

Determine the Laplace transform of the following signal, x(t), with an infinite number of chopped sinusoidal waves.

Problem 5:

A continuous-time system is defined by the following differential equation

$$\frac{d^2 y(t)}{dt^2} + 5 \frac{d^2 x(t)}{dt^2} - \frac{dy(t)}{dt} + 3 y(t) - 2x(t) = 0,$$

where x(t) is the input and y(t) is the output of the system. Compute the response, y(t), for all $t \ge 0$, when $y(0^-) = -2$, $\dot{y}(0^-) = 1$, and x(t) = r(t) = tu(t).